108,470 research outputs found

    Turbulence Time Series Data Hole Filling using Karhunen-Loeve and ARIMA methods

    Get PDF
    Measurements of optical turbulence time series data using unattended instruments over long time intervals inevitably lead to data drop-outs or degraded signals. We present a comparison of methods using both Principal Component Analysis, which is also known as the Karhunen--Loeve decomposition, and ARIMA that seek to correct for these event-induced and mechanically-induced signal drop-outs and degradations. We report on the quality of the correction by examining the Intrinsic Mode Functions generated by Empirical Mode Decomposition. The data studied are optical turbulence parameter time series from a commercial long path length optical anemometer/scintillometer, measured over several hundred metres in outdoor environments.Comment: 8 pages, 9 figures, submitted to ICOLAD 2007, City University, London, U

    On the threshold-width of graphs

    Full text link
    The GG-width of a class of graphs GG is defined as follows. A graph G has GG-width k if there are k independent sets N1,...,Nk in G such that G can be embedded into a graph H in GG such that for every edge e in H which is not an edge in G, there exists an i such that both endpoints of e are in Ni. For the class TH of threshold graphs we show that TH-width is NP-complete and we present fixed-parameter algorithms. We also show that for each k, graphs of TH-width at most k are characterized by a finite collection of forbidden induced subgraphs

    Thermal buckling analysis for stiffened orthotropic cylindrical shells

    Get PDF
    Structural analysis of thermal buckling of orthotropic, multilayered, stiffened cylindrical shell using finite differences and determinant plotting or modal iteratio

    A flowing plasma model to describe drift waves in a cylindrical helicon discharge

    Full text link
    A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetised plasma (WOMBAT), with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalised rotation frequency, lower temperature and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These results consolidate earlier claims that the density and floating potential oscillations are a resistive drift mode, driven by the density gradient. To our knowledge, this is the first detailed physics model of flowing plasmas in the diffusion region away from the RF source. Possible extensions to the model, including temperature non-uniformity and magnetic field oscillations, are also discussed

    Impact of dynamical chiral symmetry breaking on meson structure and interactions

    Get PDF
    We provide a glimpse of recent progress in meson physics made via QCD's Dyson-Schwinger equations with: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a pre'cis on the physics of in-hadron condensates; results for the masses of the \pi, \sigma, \rho, a_1 mesons and their first-radial excitations; and an illustration of the impact of DCSB on the pion form factor.Comment: 6 pages, 3 figures, 1 table. Contribution to Proceedings of the 11th International Workshop on Meson Production, Properties and Interaction, Uniwersytet Jagiellonski, Instytut Fizyki, Krakow, Poland, 10-15 June 201

    Coherent spin mixing dynamics in a spin-1 atomic condensate

    Full text link
    We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean field theory and adopting the single spatial mode approximation (SMA), the condensate spin dynamics is found to be well described by that of a nonrigid pendulum, and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.Comment: 6 pages, 5 eps figures, update the discussion of the experimental result
    corecore